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Abstract. This paper contains a calculation of the Casimir surface force density in spherical 
geomeuy under b e  different circumsmces: (i) The system is an infinitely thin, perfectly 
conducting shell, endowed with dispersive properties. The presence of dispersion means that the 
earlier expressions calculated by Boyer (1968) and others have to be generalized: in particular, 
it is possible to revisit the old semiclassical eleclron idea of Casimir (1956). (ii) The system 
consists of two different spherical shells, of the same type as above. In patticular. the non- 
dispersive Casimir surface force between two Rat plates is recovered as the leading term in the 
formalism when the curvatures of the shells go to zero. (iii) The system is a compact dielectric 
ball, surrounded by a vacuum. 

Gene4 formulae are given in all three cases, consistency checks carried out, and some 
simplifying approximations are given. All physical expressions, if necessary regularized by the 
Riemann Zeta function method, are clear-cut and finite. 

1. Introduction 

Consider the stationary quantum electromagnetic zero-point fluctuations in a spherically 
symmetric dielectric system, typically a dielectric ball of radius a, surrounded by a vacuum. 
The task to be considered in this paper is to calculate the Casimir surface force density 
F on the system, using the Maxwell stress tensor. Let S,, be the Minkowski energy- 
momentum tensor for the electromagnetic field. The four-force density f, in the system 
is thus f, = -a,S,,, and is, for a homogeneous sphere, different from zero only in the 
boundary layer around r = a. The time derivative of the electromagnetic momentum 
density does not play any role under stationary conditions, as assumed here, and the spatial 
components of the four-force density can accordingly be written as fi = -akSik, where the 
sum over k runs from 1 to 3. (The Maxwell stress tensor is equal to 4 j . t . )  Integrating the 
radial component f, across the boundiuy layer, we obtain in obvious notation 

(1) 
We shall assume that the medium is non-magnetic, p = 1, and that it is dispersive with a 
frequency-dependent permittivity E(w) .  We may thus write the linear constituent relation for 
the material as D = EE, where E is an integral operator defined such that the constitutive 
relation reads D(o) = E(o)E(w) in Fourier space (see, for instance, [I] p 77). In classical 
electromagnetic theory we have 

(2) 

F = &,(a-) - S,,(u+). 

s,, = -$(E? - E:) - ;(If; - H:) 
11 Present address: IKU, Sintef Group, N-7034 Trondheim. Norway. 
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where E1 denotes the component of E transverse to the radius vector T .  

x and x’,  and its Fourier transform r(r. r’, U ) ,  defined such that 
In the quantal theory we consider the Green function r(x, x ‘ )  for two spacetime points 

with 5 = f - r’. In non-dispersive theory, I plays the role of a high-frequency cut-off 
parameter. From Maxwell’s equations one derives the governing equation for r 

(4) -v x v x r ‘ ,w)  + E(w)wZr(T, T’, W )  = -O*IS(T - T I )  

and the effective product of two electric field components becomes 

i (&(r)  Ek(r’))w = r i t ( r ,  T’ ,  w )  . (5) 
The solution of (4) leads to two scalar Green functions, 4(r, r’) and Gi(r, r‘). These must 
be constructed such that the electromagnetic boundary conditions at dielectric surfaces are 
satisfied, and also such that the basic requirements about finiteness at the origin and outgoing 
wave conditions at infinity are met. The two-point functions for the electric and magnetic 
fields in Fourier space are 

1 l a  a m 
i(HL(r)HL(r’))o = C2ef l [ e (o )wzGt ( r , r ‘ )+  4rr --r-r’F&-,r’) rr‘ar arl . 

1 4  

Here, we assume the two points T and r’ lie in the same angular direction. The radial 
difference r - r’, however, does not necessarily have to be small in (6)-(9). 

The calculation of the quantal surface force in the dielectric ball problem may thus 
appear to be simple. at least in principle: we may first solve the governing equation (4). 
then calculate the two-point functions from ( 6 x 9 )  in the limit r‘ + r ,  and finally find F 
from (2) and (1). However, experience has shown that the task is more complicated than 
one might expect beforehand. It turns out that the problems met are essentially of two 
types: (i) In the non-dispersive theory, in the absence of a cut-off parameter, there occur 
divergences at high frequencies. As already mentioned, one can avoid these divergences 
by introducing a time splitting T serving as a cut-off [Z,3]. The question arises: is the 
high-frequency divergence a fictitious phenomenon, without physical significance? It might 
be tempting simply to count the divergent term as insignificant; however, it has turned 
out in later years that this term is a substitute for a quite real effect connected with the 
dispersion of the material. Candelas [4] seems to have been the first to emphasize the 
importance of dispersion in connection with the Casimir effect. His general arguments based 
upon quantum field theory, were later essentially supported by explicit model calculations 
for a relativistic medium, i.e. a medium satisfying ~p = 1 [5,6]. In fact, inclusion of 
the dispersive effect may reverse the direction of the surface force. In the following we 
shall proceed so as to avoid the time splitting 5 completely, and instead work with a 
simple dispersive relation for the material. This appears to be the most reasonable physical 
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approach. We emphasize that we still require the two spacetime points to be spatially 
separated, r - r’ being small but always different from zero. (We may also mention that 
our choice of separating the two points in the radial direction is a very natural way of 
proceeding but nevertheless not always followed in quantum field theory. For instance, 
although in a somewhat different context, one may consult [7] for a treatment involving the 
separation of points in  the azimutal, instead of in the radial, direction.) (ii) The second type 
of problem is that divergences occur in the formalism when the angular momentum variable 
e is summed up to infinity. This phenomenon is characteristic for curved boundaries and are 
absent if the boundaries are plane, The angular momentum divergence is more difficult to 
deal with than the previous high-frequency divergence. Even use of the asymptotic Debye 
expansions for the Riccati-Bessel functions-these expansions are most accurate precisely 
in the region of high !-turns out to lead to divergences when ! -+ CO. As we shall 
show below, it is, however, possible to regularize these divergences in a consistent way by 
means of the Riemann zeta function. We obtain clear-cut answers for all physical surface 
forces. 

We shall follow the strategy of approaching the complicated Casimir problem for 
dielectrics in successive steps, dealing with simpler situations first. In the next section 
we consider a single, perfectly conducting shell, with vacuum regions on the inside and on 
the outside. That is, we return to the situation considered by Boyer [8], Milton et al [3], 
and others. The essential new element in our analysis, as compared to the previous ones, 
is that we take dispersion into account, and thereby demonstrate explicitly the attractive 
part of the surface force arising from the absorption frequency, called 00. Moreover, we 
revive an old idea put forward by Casimir 191, according to which a semiclassical ‘electron’ 
is pictured as a perfectly conducting shell, and calculate the value of xg = moa resulting 
from the requirement that the electromagnetic zero-point fluctuations stabilize the electron 
against Coulomb repulsion. Our calculation yields xo = 0.397. 

As the next step in complexity we consider in section 3 a double singular shell, consisting 
of perfectly conducting surfaces at r = a and r = b. As far as we know, this system has 
not been considered before. We give the Green functions in the region a < r < 6 ,  calculate 
the Casimir surface forces, and verify, in particular, that the non-dispersive surface force 
density reduces in the limit a -+ CO to the expression n 2 / 2 ~ d 4 ,  with d = b -a. This is 
the standard expression for the force between two plates. 

In section 4 we finally turn to the compact dielectric ball, calculate the two-point 
functions on the inside and on the outside, and also the corresponding inside and outside 
surface force densities, e,, and Fa,, respectively. Making use of Riemann zeta-function 
regularization, the non-dispersive parts of fin, and F,, are worked out in detail in the 
limiting cases of high-permittivity media (n >> l), and dilute media (n N l),  n meaning 
the refractive index. Finally, as an illustration of the close connection between angular 
momentum divergence and curvature of the dielectric boundary, we consider in the appendix 
the planar one-surface geometry, and verify explicitly the absence of the divergence in that 
case. 

We employ HeavisideLorentz units, and put f i  and c equal to unity. 
Finally it may be worthwhile to give some further references to works on the Casimir 

effect. General reviews are given by Plunien et al [lo] and by Barash and Ginzburg [ll].  
Other useful sources are the books by Lifshitz and Pitaevskii [12], Ginzburg [13], and the 
Casimir honorary volume [14]. Popular accounts of the effect are given by Power [15], 
Belinfante [16] and by Elizalde and Romeo [17]. 
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2. Single spherical shell 

We recall the physical situation: the radius of the shell is r = a, there is vacuum on the 
inside as well as on the outside, and the temperature is zero. The dispersion of the material 
will be accounted for in a very simple way: we shall in the general pase take the permittivity 
E@) as a function of the frequency & along the imaginary axis to be a step function, as 
illustrated in figure 1. The ‘absorption’ frequency 00 serves in the mathematical sense as 
a high-frequency cut-off; the dielectric properties of the material are absent for frequencies 
& > 00. Thus, in the case of perfect conductivity, E -+ 00 for & < 00, while E = 1 for 
& > WiJ. 

Figure 1. The adopted dispersion relnlion: 
permittivity E versus lrequency 2 along the irmginary 
fmquency axis. 

#. 

WO w 

It ought to be emphasized that is required to have a stepfunction form along the 
imaginary axis only; the variation of E(O) along the real axis is not given and must be 
expected to be quite different. The value of E(O) along the real axis will have to adjust 
itself such that the dispersion relations of the Kramers-Kronig type, expressing the analytic 
properties of E @ )  in the upper half of the complex frequency plane, are satisfied. 

The two scalar Green functions F&, r’) and Gl(r, r’) for the spherical shell are the 
following [3]. For r, r’ c a, 

whereas for r ,  r‘ > a, 

Here, k =[U 1, j ,  and hr’ are the spherical Bessel and Hankel functions, and i$ and Zt are 
the Riccati-Bessel functions in conventional normalization [18] 

?!(XI = xj,(x) Z ~ ( X )  = x h r ’ ( x )  (12) 

corresponding to the Wronskian W(&, ;e]  = i. The two-point functions for the electric 
and magnetic fields are now calculable from (6)-(9), in the limit r + r’. We show briefly 
the calculation for the radial electric field only: inserting (10) into (6) we obtain for two 
neighbouring points in the interior region 
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and in configuration space, in analogy to (3) when r = 0, 

(Er(r)E,(r'))++, = Sm k ( ~ ~  (r)Er (14) 
-m 2 x  

The integral over w can be replaced by twice the integral from zero to infinity. We perform 
a complex frequency rotation 

k + $ = id  ka + ida  ix (15) 
and define new Riccati-Bessel functions st, et related to the conventional ones Se, Z p  by 

where U = 4 + f. The new normalization corresponds to the Wronskian W(sp, et) = -1. 
We get, in configuration space, for r,  r' c a, 

Here, the integration over x = &a has been terminated at 
xo = ma 

in accordance with the dispersion relation shown in figure I. One may note that there is no 
divergence at the lower limit of the integral in (17); this can be seen from the approximate 
forms 151 

which hold when x >> 1 .  
A similar calculation for the other two-point functions yields, for r,  r' < U ,  

On the outside, for r,  r' > a we have 
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The surface force density on the shell can in accordance with (1) and (2) be written 
as the difference between the quantities -$(E: - H:) evaluated on the inside and on the 
outside: 

(27) 
#-,=a- 

F = -$[(&(r)&(r‘))  - (H~(r)ff~(r’))]+,,=+. 

(EL (r )EL (r ‘) = (fh (d H, (r‘) ),+ r=of  = 0 

Here we have taken into account the relations 

(28) 
which express the boundary conditions at the surface (they follow also formally from (ZO), 

Substitution into (27) yields, when we take into account the differential equation for the 
(211, (2% and (25)). 

frequency-rotated Riccati-Bessel functions, the surface force density 

Strictly speaking, equation (29) gives the non-regularized force. However, in the present 
case the non-regularized force becomes identical to the regularized one. This is so because 
the contact term is equal to the force calculated if the inside region, respectively the outside 
region, were uniform (i.e. without boundaries). These uniform regions correspond to the 
ik jt(kr,) hF)(kr,) terms in (IO) and ( l l ) ,  and are thus equal to each other at the surface. 
This means that the contact term for the force vanishes, and (29) gives accordingly the 
physical force as it stands. 

Equation (29) is in accordance with the result of Milton et al [3], except from the 
dispersion-induced upper limit xo. We shall now show how the expression can be further 
processed in a fairly simple way, up to the leading term in accuracy, by making use of the 
Debye expansions for the Riccati-Bessel functions. First, rewrite (29) such that it contains 
the derivative of the logarithm of a product 

and insert this into the Debye expansions [18,19] 
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with similar expansions for s ; ( x )  and e'&). Here z = x/u,  and 
2 -112 t ( z ) = ( l + z )  

The expressions for the coefficients U K .  vk will not be written down here: they are given for 
k 1 , 2 , 3  in [18] and for values of k up to k = 6 in [19]. Sufficient in our context is the 
simple relationship 

which shows that the leading contribution to the derivative of the logarithm in (30 )  is through 
the U(l/u2) term. Using results calculated earlier in related works [ 6 , 2 0 ] ,  we obtain 

Here, w = y ,  t = t ( z )  as given by (33), and the Euler-Maclaurin formula has been used. 
The integrals in (36)  can be evaluated and we obtain the following compact and explicit 
form: 

(37) 
where we have defined the following functions: 

x(7 + 9x2) 
8(1 + x2)2 

M ( x )  = l' z6t6(z) dz = x - 7 tan- ' (x)  + 

X x ( 3  - 8x2 - 3x4) 
48(1 + x 2 ) 3  &(x )  zZ t8 ( z )  dz = &tan-] ( x )  - 

It is of interest to approximate (37)  by a simpler, asymptotic expression in the limit 
xo + CO, which corresponds to the medium being non-dispersive. It is seen that the 
divergence of (37) in this case is linear in xo. We obtain 

for large xo . (39 )  

The condition imposed on xo in order to make (39) a useful approximation is weaker than 
one might expect. As mentioned already in [ZO], numerical checks show that a value of xo 
as low as 1.4, implies that the error in (39 )  is less than 1%. For xo = 1 the error is larger, 
about 10%. Thus for xo 5 1, (39) ceases to be useful. 
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Figure 2. Showing the validity of the asymptotic forcc density expression (equation (39)). 

The term & in the parenthesis in (39) is characteristic for the non-dispersive theory. 
This is the accuracy following from our use of the Debye expansions up to the leading term. 
We have = (i) x 0.09375, which is to be compared with the number (i) x 0.09235 
calculated by Milton et al [3] in the more accurate non-dispersive calculation. The presence 
of the xo term is interesting from a physical viewpoint, since it means that there is an 
attractive component in the force, the strength of which is a function of the magnitude of 
XO.  It becomes natural here to recall the semiclassical electron model proposed a long time 
ago by Casimir [9]: the idea was to calculate the magnitude of the fine-structure constant 
a: = e2/4r by requiring balance between the inward-directed force arising from zero-point 
fluctuations and the outward-directed Coulomb force. The latter force is, per unit area, 

ez a: 
F#."l = - = - 

32ir2a4 8ra4 
where e is the charge on the shell. Evidently we are unable to calculate the value of a: here, 
but we can answer a more modest question: what is the magnitude of xo that follows from 
the mentioned requirement. F + Fcoul = 0, if a: = 1 is used as an input parameter? It 
is seen that this value of xo is a pure number, independent of the radius a. First using the 
simple equation (39) together with (40) we obtain xo N 0.63, which, however, is too small 
a value to be regarded with confidence in relation to the approximate equation (39). This 
is readily seen from figure 2, where we have plotted the force for small values of X O ,  both 
according to (37) and (39). A numerical calculation, based upon (37), yields 

1 37 

xo E = 0.397. (41) 

For example, put a equal to 2.8 fm, the classical electron radius. Then, equation (41) 
implies in dimensional units that the cut-off for the classical 'electron' equals = xoc/a 
= 4 . 3 ~ 1 0 ~  S-'. 

Before leaving the theory of the single shell, we note the following property of the 
two-point functions given in (17). (20H26). These functions refer to the total electric or 
magnetic field components, in the inside or in the outside region. Thus the terms referring 
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to the uniform vacuum are kept in the scalar Green functions Fe and Ge; cf the first terms 
on the right-hand sides in (IO) and (11). Now, one may instead choose to work with 
the two-point functions that contain the surface-induced contributions only, and thus to 
subtract off the uniform vacuum terms from the beginning. This may be a simplifying way 
to proceed in some cases, in particular, because the two-point functions always refer to 
‘disturbed’ quantities caused by the presence of the boundaries. There is thus no need for 
regularizing physical expressions later on. We shall call these new functions the ‘effective’ 
two-point functions. For reference purpose we write them down here, for the electric field 
components. For r, r’ < a, 

(43) 
Here, the limit r’ + r is understood but not written out explicitly. For r, r’ z a we have 

(45) 
The effective two-point functions can evidently be used to calculate the surface force. 

But it is then necessary to start from the full stress tensor expression 

(46) 
instead of from the simplified expression (27). This is so because (27) is based upon (28), 
which require the fields to be the total fields. The analogous two-point functions for the 
effective fields do not vanish on the surface. 

r’-w=a- 
F = - . ? [ E (  ( I r)&(r’))  - ( E l ( r ) E l ( r ‘ )  + (ff&)ffr(r’)) - ( f f . ~ ( r ) f f ~ ( r ’ ) ) ]  r’+r=n+ 

3. Double spherical shell 

The situation is sketched in figure 3: there are two perfectly conducting singular shells 
situated at r = a and r = 6, with identical materials in the shells so that the ‘absorption’ 
frequencies are identical, equal to 00. In the inner region I, the annular region II, and the 
outer region III, we assume there to be a vacuum. 

Let us first consider the two scalar Green functions, Fe@, r’) and Ge(r, r‘). In region I, 
they are given by (10). as before. In region 11, they are 

where k = IwI as before, and where we for simplicity have introduced the abbreviations 
ie(1) &(kb), etc. In region III, the Green functions are given by (I l ) ,  
with a replaced by b. We can thus find the two-point functions everywhere: in region I they 

i e (ka) ,  ie(2) 
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can be read off directly from (17) and (20)-(22), in region Dl they are given by (23)-(26) 
with a --f b, and in region II they are calculated by inserting (47) and (48) into (6)-(9). We 
shall not give the explicit two-point functions in region II here, but rather focus attention on 
the surface force density acting on one of the surfaces, say the force Fa on the inner surface. 
As usual, the force is calculated by taking the difference between the diagonal stress tensor 
components at r = a- and r = a+. To simplify the notation, we write henceforth (e:(&)) 
instead of (Er(r )E, (r ' ) ) ,+rx i ,  etc. In order to exploit the simplification caused by the 
electromagnetic boundary conditions at the surface we use the two-point functions for the 
complete fields, rather than the 'effective' two-point functions. We then have 

(49) Fa = - ~ ( E ; ( u - ) )  + i(fff(~-)) + $(E:(u+)) - $ ( H ~ ( u - ) ) .  
Here, the terms at r =a- are found from (17) and (22). A brief calculation using (47) and 
(48) shows that the corresponding terms at r = a+ are 

(51) I e'(bxln) 
e&) - t s d x )  

e;(.) - ~ ~ ( x )  

e;(.) - w s ; ( x )  

er(.) - &se(x) cdbx a )  + e ' ( b ~ l 4  , 

(note that primes mean differentiation with respect to the whole argument). If the outer 
shell recides to infinity, b/a -+ CO, then expressions (50) and (51) reduce to the single-shell 
expressions (U) and (26) evaluated at r = a t .  Substitution into (49) yields 

This is the generalization of (29) to the case of the double shell. No regularization procedure 
is to be imposed here: the eventual 'contact' term to be subtracted off would be the radial 
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force across the fictitious surface r = a, if both shells were removed. Evidently such a 
term is zero, and so (52) gives the physical force directly. 

We shall not evaluate the expression (52) in general. What we shall confine ourselves 
to is to rewrite it in a compact form which is convenient for further processing, and also to 
examine one important special case in detail, namely the one in which a + do at a fixed 
distance d = b - a  between the shells. The point is that we have herewith the opportunity 
to check the consistency of the formalism: the dominant term in F ought in this limiting 
case to approach the standard expression 

for the force between two flat parallel plates. 
Let us first write the force such that the quantities 

x = & a  y = G b  (54) 

appear as independent variables. Introducing as in previous works [ZO, 211, the quantity QP. 
and its derivatives, 

we can write the force in the following compact form: 

(the operator a/ax is taken at a constant value of y ) .  Next, in Q P . Q ~ " ( ~ ,  y )  we separate off 
the factor ee(x)e;(x)se(y)s;(y),  in which the y-dependent terms do not contribute in view 
of the derivative in (56). We are left with 

(57) 

in which the first term is seen to be identical to the force (30) on a simple shell, In this way 
we have managed to separate out the most delicate part of the force. The remaining second 
term in (57) will, similar to the first term, be processed further by means of the Debye 
expansions (31x34). Because of the difference between x and y ,  there is a non-vanishing 
contribution to the force already from the O(uo) terms in the expansions. Going one step 
further, up to U(l/u), we see that, since dq/dz = l/(tz), 

A parameter playing an important role here is 

f = +(:) - (z)] 
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So far, the radii a and b have been assumed to be arbitrary. From now on we consider the 
case when the curvatures are small. It means that the parameter 5 ,  in general, defined as 
6 = d / a  = (b - a ) / a ,  is small compared to unity. 

In this case we have, to O(l/u) in the Debye expansions, 

since terms containing ez /v  = a / v 2  = O(l/uz) are negligible. The result is the same if 
we were working on the level O(l/vo) from the outset; the O ( l / v )  terms do not contribute. 
Since a f / a x  = -2 / ( tx ) ,  we then obtain 

where, for simplicity, we have assumed xg > 1 so that the expression (39) is an adequate 
approximation for (37). Now, f = ?[q(bz/a)  - i7(z)I. 

Equation (62) gives the most general expression for the dispersive shell. Some numerical 
calculation is needed for further evaluation. (As q is a monotonically increasing function of 
its argument, f is positive, and the sum over t always converges.) However, as mentioned 
above, an important impetus for the present analysis was to check the consistency with 
expression (53) for two plates. This is a non-dispersive result, and so we may achieve our 
aim without paying any attention to the dispersive terms at all in the following. That means 
we may ignore the first xo term in (62) and replace the upper limit xo/v in the integral by 
infinity. Thus 

We now introduce the geometric series 

and make use of a result derived in [22] for the sum 

to obtain for the last term in (63). omitting O(f4), 

Inserting [221 

we obtain for the term (66) 



Casimir surface forces 6865 

Altogether, carrying out the integrations over z ,  we finally find the non-dispersive force 
density to be 

The dominant term here is seen to be precisely the flat plate result (equation (53)). Our 
consistency check does therefore give a satisfactory result. 

Recall again that no regularization procedure has been used to obtain this result: the 
force Fa is the total force on the shell, consisting of an interior part fint and an exterior 

(70) 
If we were to calculate cnI or Felt separately, then regularization procedures would be 
needed (cf the following section). In the sum (70). however, the two infinities cancel out. 
All expressions are well defined, 

One cautious remark, concerning the accuracy of the two terms in (69). ought to be 
made. Taking d to be of zeroth order we see, in view of the relation ] /a4 = (4/d4p that 
the first term in (69) is a fourth-order quantity. One might wish, therefore, to carry out 
the expansion in t two orders further in the second term, to obtain the contribution to 
the mutual force to the same formal accuracy as in the first term. It is to be observed, 
however, that the first term in (69) has its roots in  the O(l/uz) correction in (35), which in 
turn is obtained when the Debye expansions (31) and (32) are canied out to 0 ( l / u 3 ) .  By 
comparison, the second term in (69) is obtained, as mentioned above, merely on the basis 
of the O(l/u) terms in the Debye expansions. The two terms in (69) therefore arise from 
different levels of approximations in the initial expansions, and their comparison should 
therefore be considered with some care. We abstain from carrying out the 6 expansion any 
further here. 

Part Fat: 

Fa = Fim + Fmt. 

4. Compact spherical ball 

Consider finally the most general case among those studied in the present paper, namely a 
single spherical dispersive ball of radius a surrounded by a vacuum. 

First, we give the expressions for the scalar Green functions: 

r, r' c U : Fc, Gt(r,r') = i n k  jr(nkr,)[hF)(nkr,) - &,o(ka)j&kr,)] (71) 
r, r' > a : 

Here k = 101, and n = n ( o )  = 
electromagnetic boundary conditions across the surface r = a yields for the coefficients 

Ft,  Gt(r,  r') = ik[j&<) - ~ ~ , ~ ( k u ) h ~ ) ( k r < ) ] h k l ) ( k r , ) .  

is the refractive index. 

(72) 
Imposition of the 
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Of main interest are the expressions for the two-point functions, in the limit rr -+ r .  They 
may be found by inserting (71)-(76) into the general expressions (6)-(9). It is, however, 
convenient here to subtract off the first terms in (71) and (72). i.e. the terms referring 
to homogeneous space regionSAready h m  the beginning. That means that we will be 
working in terms of the 'effective' field prcducts, being analogous to the expressions (42)- 
(45) already given for the single shell. A non-trivial point here in comparison to the cases 
studied earlier is that because of the presence of n in the arguments in the interior region, 
the two first terms in (71) and (72) do not become equal to each other at r = a. 

It may be noted that ow way of calculating the surface force on the shell is equivalent 
to using the complete two-point functions from the beginning, and thereafter subtracting off 
a contact term constructed according to the following prescription: 

(i) the inner contact force be calculated as if the inner medium be filling all space; 
(U) the outer contact force similarly corresponding to the outer vacuum region be filling all 

The effective elechic field prcducts in the interior region r, r' < a are (for simplicity we 
again omit the subscripts r' + r ) :  

space. 

(78) 
where n = n ( i ) .  For reference purposes we give the frequency-rotated coefficients 
explicitly, 

In the exterior region we obtain similarly 

where 

One may note that all coefficients (73)-(76), as well as (79). (80). @3), (W), are real 
quantities. The relationship between the original and the frequency-rotated coefficients in 
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the interior is A,c.c(ix) = (-l)'+'AF,c(x); the corresponding equation also holds for the 
B,c,c-ccefficients in the exterior. 

Because of the presence of n it is insbuctive, instead of calculating the surface force 
density F directly, to consider its interior part f in[  and its exterior part Fat separately. 
Starting with the interior, we have 

fin[ = -$(Ef(a-)) ,a  t fW:(a-)),a - f(H,?(a-))& + f (Hf (a - ) ) ew  (85) 

cf (2) .  Inserting the expressions (77) and (78) along with their magnetic analogues we then 
obtain, when taking into account the governing equation for the Riccati-Bessel functions, 
the following compact form: 

We have here introduced the symbol 

Ap' = [AF(x) + Ac(x)]s&x)s;(nx) (87) 
(primes mean derivatives with respect to the whole argument, i.e. with respect to nx here). 
For the exterior force we obtain similarly 

m Fat = - 2na4 - 1  Jd x dx %A?[log (-)]' 
4rr k t  

where 

(89)  ACX' - - [ B F ( x )  + Bc(x)le&)e;(x). 

The total surface force density is F = fin, + Fat. 
We shall finally give approximate formulae for fiat and F,, in limiting cases, again 

using the Debye expansions to U ( l / v ) ,  ignoring dispersion. The derivative terms in (86) 
and (88) become to this order 

where t2(nz) = 1/(1 + n2zZ) .  These expressions hold for arbitmy values of n. The 
analogous expansions for (87) and (89) are for general n more unwieldy. We give the 
expressions only in two limiting cases: if n >> 1, then to the same order 

whereas for dilute media, n N 1 ,  we obtain 

(94) 

(95) 



6868 I Brevik et a1 

Consider now Fint , when n >> 1. The omission of dispersion means that n = const, 
xo =CO in (86). The last term in (90) is seen not to contribute to leading order in l/n, and 

"0"diSP 

so 

Nor does the last integral here contribute to the leading order in l/n, and, including only 
the dominant contribution to the first integral, we obtain 

The divergent sum over L needs regularization. The method that we shall use here is to 
exploit the analytic continuation of Riemann's zeta function. The only formula needed in 
practical calculation is 

2 us = (2-5 - l)C(-S) 
e=o 

with s an integer. The Riemann zeta-function method is simple and effective, and is used 
so often that it has  become a standard method in quantum field theory. We shall briefly 
return to the legitimacy of this method in the concluding section. For the moment, let us 
simply put s = 2 in (98) to get 

which means that the interior non-dispersive force to leading order in I/n is 

The result is the same as if we were working on the O(vo) level from the outset. The force 
is repulsive, as we would expect. It is inversely proportional to n, and vanishes if n + 03. 

Again, this is a result that we would expect, since the fields must vanish inside a medium 
of infinite permittivity. 

The exterior force in the same limit is found by inserting (93) and (91) into (88). Using 
(99), together with the substitutions 

L=1 (=I 

which are obtainable from (98), we find 
1 t 3 ( z ) t (nz ) [4 -  llz2r3(z)ldz 11 3 -- +-I .  (102) 

1 F;;""pCn >> 1) = - -- 
8za4 [ 871 I 1 + (1 + 2z2)t(z)t(nz) 36n 64 

Here the last two terms owe their existence to our use of the Debye expansions up to 
U(l/u); they would be absent on the U(@) level. If n -+ 03, the first term in (102) 
tends to zero. We thus see that in the limit of infinite permittivity it is the U( l /v )  terms, 
rather than the O(uo) terms, that are most important. The two last terms in (102) yield a 
compressive force. 

The expression (102) in the limit n + a7 makes it possible to make an interesting 
consistency check of the formalism, by comparing it with the extemal Casimir energy Eut 
calculated in [22] for a spherical ball whose medium satisfies the condition E@ = 1. In the 



Casimir surface forces 6869 

limit E --f 00. i.e. f i  + 0, the electromagnetic boundary conditions at the surface for such 
a medium ensure the exterior fields to be the same as outside the n + 00 ball considered 
in the present paper. From (3.22) in [22] we quote, omitting the time-splitting cut-off term, 

In view of the general relation between surface force and energy 

a Eexr Fe, = -(1/4na2) - - 
aa 

we see that (102) and (103) are in perfect agreement, thus supporting the consistency of the 
theory. 

If the medium is dilute we obtain by a similar calculation, inserting (94) and (95) into 
(86) and (88). the non-dispersive forces to first order in (n - 1). 

F,"ondiap n - 1  
(n  2: 1) = - ,or 

If n > 0 there is a repulsive force on the inside and a compressive force on the outside, the 
latter being only half as strong as the former. Adding (104) and (105) we thus see that the 
total non-dispersive surface force density is repulsive: 

5. Conclusion and final remarks 

Our calculation is based on a non-magnetic dispersive model for the medium. The 
temperature is T = 0. The adopted dispersion relation is as shown in figure 1; for simplicity 
it is taken to be a step function when viewed along the imaginary frequency axis G. 

The case of perfect conductivity corresponds in our model to E + 00 for LJ < WO. 

while E = 1 for G > WO. For a single, perfectly conducting shell our k e n  function 
calculation yields the general expression (37) for the surface force density. Jfxo  =ma 5 1, 
equation (39) is a useful approximation. The non-dispersive term in thii expression is in 
agreement with Boyer [81, Milton et al 131. and others. The necessity of including also 
an attractive dispersive term, proportional to XO, bas been known for some years, since the 
paper of Candelas 141. The dispersive term proportional to XO, has been found also in more 
recent model calculations [S. 6,201. The xo term makes it possible to revive the Casimir 
semiclassical electron model [9]: it corresponds to the specific value xo = 0.397 for the 
non-dimensional cut-off. 

The perfectly conducting double spherical shell analysed in section 3 is the next step in 
complexity. Equation (57) gives the general surface force density on the inner shell. If the 
distance d between the shells is kept constant, while the radii a and b recede to infinity, 
then the dominant term in the non-dispersive pm of the surface force is according to (69) 
in accordance with the standard result ?7*/240d4 for two parallel plates. This is a useful 
consistency check. 

For the compact spherical ball considered in section 4 the innedouter surface force 
densities are given by (86) and (88). respectively. Explicit expressions are given later in 
this section, in limiting cases. Some remarks are called for, as regards the legitimacy of 
the Riemann zeta-function regularization that we use: this method is simple and effective, 
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leading generally to results that are in agreement with what one can obtain in other ways. 
The method has therefore been used frequently in previous works in the present field of 
research [23,22,20]. In this context we find it worthwhile to consider the following example 
in some detail, as it shows in a clear way the basic properties of the method: consider the 
force term given in dispersive theory by (3.17) in [ZO]. This term gives part of the surface 
force on a singular shell. Manipulate this term in the following way: 
(i) eliminate the influence from dispersion by putting xo = 00; 

(ii) evaluate the remaining divergent sum over e by the Riemann zeta-function method. 
The result obtained is found to be identical to that obtained within non-dispersive theory, 
after the cut-off term involving the time-splitting parameter has been separated off [24]. 
The Riemann zeta function is generally effective to obtain the non-dispersive part of the 
force. 

Another example of the same sort is provided by the expressions for the interior/exterior 
energies Eiot and Eul obtained in [22] for a singular shell; cf also (103) above. These 
expressions were calculated by other methods. However as remarked in [ZZ], the most 
simple way of obtaining the non-dispersive expressions is precisely to make use of the 
Riemann zeta function. 

One may still argue that the handling of infinite sums by means of (98) shows that the 
regularization is physically not properly understood. We agree with this attitude to some 
extent, although the divergent behaviour is not peculiar for Casimir theory but rather a 
common feature of quantum field theories in general. 

Finally, we emphasize that the force calculations above were based upon the Minkowski 
energy-momentum tensor. (Under stationq conditions, this tensor is equivalent to the 
Abraham tensor.) One may wonder if not the electrostrictive contribution to the force [ 11 
should have also been included in the force. We think that the point here is the specific 
way in which measurements are carried out. In most cases involving force measurements 
on dielectric media the electrostrictive contribution to the force does not play any role at 
all; cf the review article [25] on the energy-momentum tensor. However, if local stress 
measurements are carried out, then the electrostrictive contribution must also be taken into 
account. Electrostriction does not seem to have gained much attention in the past as far as 
the Casimir effect is concemed; the only work we are aware of is actually [26], although 
that work was limited to non-dispersive theory. For completeness, it would be desirable to 
calculate the electrostrictive contribution to the force along the lines of the present paper. 

Appendix. Planar one-surface geometry 

The reason for the angular momentum divergences in the non-regularized expressions 
encountered above is the curvature of the dielectric surface. Divergences of this sort should 
be absent if the surface were planar. Let us illustrate this point by considering the one- 
surface planar geometsy of figure Al: for z > 0 there is a homogeneous non-magnetic 
medium, for z < 0 there is a vacuum. We shall calculate the surface force density = F 
on the boundary z = 0. 

The governing equation for I? is (4), as before. We introduce a transverse spatial Fourier 
transform, 

where q is the component of the total wavevector k transverse to the z-direction. When 
dealing with single Fourier components, we can without loss of generality choose q along 
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Figure A l .  One planar dielectric surface, lying at L = 0. 

the x-axis (figure Al). The diagonal components of rjk(z. z‘, q. U )  in the medium region 
z > 0 become [27,28] 

) (A2) r,, = - - J ( ~  1 - z‘) + -(-e-+-~’~ K + ~ f i ~ - x ( z + z ’ )  
E 2& 

where the electric and magnetic reflection coefficients are 
E K - K q Z  U - &KMc 

U + &KWc 
R =- RH 

K + K”= 

We take the limit z’ 3 z ,  but keep z’ and z separated so that the delta functions above can be 
omitted; moreover we consider the boundary-induced field products only, i.e. the ‘effective’ 
products being analogous to the expressions (77). (78) and (U), (82) for the sphere. The 
effective products involve only the R E ,  RH terms in (A2HA4). After a complex frequency 
rotation we obtain, for z ,  z’ > 0, 

e (EAZ)E~(Z’) )~~ =s 1 F G ~  Y P ~ P ~ + E ~  

(EJ.(z)EL(z‘))~~~ = 

(-47) 

(A8) 

(A9 

W O )  

where E = EfiLJ), (E:) = (E:) + (E:). We have here introduced the Lifshitz variables 
r29.121 p and s, which can in terms of the variables above be written as p = (l/LJ)Kvac(i&), 

m p z - 1  s-Ep -=az 1 mLJ3 

S + P  



In the field products above, the limit L' -+ z is implicitly understood. 
Consider now the surface force density F(+) acting on the right-hand side of the surface. 

It is calculated to be 

F(t)  = -$aE:(t))eH t $ ( q ( + N e E  - ;(H,z(+)),fr t ; ( q ( + ) ) d f  = 0 (A 12) 
when we insert (A7HAlO) for z -+ 0. The total surface force constructed as the sum of 
the forces on the two sides must therefore also vanish: F = F(+) + F(-) = 0. 

There are thus no angular momentum divergences here. The example illustrates the 
general property that a curvature of the boundary is a necessary condition for this kind of 
divergences to occur. 
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